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The impact of baseline covariates on the
efficiency of statistical analyses of
crossover designs

Zhiwu Yan*'

We investigate the impact of baseline covariates on the efficiency of statistical analyses of crossover designs. For
practical considerations, we contemplate two different baseline methods: study baselines and period-dependent
baselines. For each baseline method, we establish analytical upper bounds for the relative efficiency of a large
class of crossover designs, the totally balanced designs, under a model with the baseline covariates as compared
with the model without the baseline covariates. We present numerical details based on these bounds for assorted
scenarios and reveal implications of these results. Copyright © 2012 John Wiley & Sons, Ltd.
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1. Introduction

Crossover designs have applications in a wide range of sciences and research areas, such as clinical
trials, pharmaceutical studies, psychological experiments, agriculture field trials, and animal feeding
experiments. The advantage of such designs is that the study subjects become their own controls, thereby
reducing the error variance.

In many experimental situations, notably in clinical trials and pharmaceutical studies, the treatment
effects are often adjusted for the baseline values of the response (outcome) variable. It is well known
that inclusion of baseline covariates in a parallel study can in general (i.e., when the baselines and
responses are moderately to strongly correlated) significantly increase the efficiency of statistical analy-
ses. In the context of crossover designs, however, the impact of baseline covariates on the efficiency of
statistical analyses has not been fully appreciated, and quite often, the analysis of covariance has been
abused in practice. With the increasing popularity of crossover designs in the past three decades, various
baseline approaches for crossover designs have been discussed in the literature, such as Hills and
Armitage [1], Wallenstein [2], Fleiss et al. [3], Willan and Pater [4], Kenward and Jones [5], Senn [6],
Jones and Kenward [7], and the recent work by Liang and Carriere [8] and Kenward and Roger [9]. Some
recommended that the change from baseline be modeled, whereas others argued that baselines should
be used as additional responses. Although most statisticians would agree that an appropriate way to
incorporate the baseline information is the analysis of covariance, baseline-related issues for crossover
designs have rarely been well addressed from such a perspective. The mathematical hurdles to obtain an
exact inference based on weighted least squares analyses for crossover designs are perhaps the primary
reason for which the analysis of covariance approach has been more or less ‘bypassed’ in the literature.
Not surprisingly, most research carried out along this line has relied heavily on computer simulations.

This article is not intended to justify or promote the analysis of covariance approach for crossover
designs. Instead, we will argue, through the analysis of covariance, that baseline information in general
makes limited additions to the efficiency of statistical analyses, especially for highly efficient crossover
designs. We hope that the message we deliver in this article can shed fresh light on other baseline
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approaches for crossover designs as well. To this end, we compare the efficiency of crossover designs
between models with and without the baseline covariates. Depending upon whether study baselines or
period-dependent baselines are fitted, analytical upper bounds of the relative efficiency for treatment
effects are obtained for totally balanced designs in which the number of periods (p) does not exceed the
number of treatments (¢). The impact of the baseline covariates on the efficiency of statistical analyses
is then examined.

In Section 2, we introduce the response models with and without the baseline covariates. Section 3
provides the upper bounds of the relative efficiency for totally balanced designs. For the arguably most
important case where p = ¢, we also present upper bounds that are independent of the within-subject
correlation. With only a few exceptions, we tabulate numerical results for each of the scenarios where
2 < p <t < 9 and discuss the implications of these results. We conclude in Section 4 with a discussion
and summary of our findings and provide the technical details for our main results in the Appendix.

2. The response models

Throughout this article, we shall assume linear mixed-effects models for the responses of interest. When
baseline covariates are not fitted, our model is precisely the same as that studied by Hedayat et al. [10].
When baseline covariates are accounted for, two different baseline methods are to be considered. The
first method uses the baselines obtained before the first treatment period (the so-called study baselines)
for each subsequent treatment period, whereas the second uses the baselines obtained for their own
treatment period (the so-called period-dependent baselines). In addition, we will assume a joint multi-
variate normal distribution of the baselines and responses, which is critical in deriving the covariance
matrix of the responses conditioning on the baseline covariates.

2.1. Without baseline covariates

Without baseline covariates, we assume that the response yx, obtained for subject s in period k, where
sef{l,..,n}and k € {1, ..., p}, can be expressed as

Vs = M+ i + & + Tak,s) + Vdk—1,5) + €kss )]

where  is the general mean, oy, is the kth period effect, & is the sth subject effect, d(k,s) € {1,...,t}
denotes the treatment assigned to subject s in period k, 74k s) is the direct effect due to treatment d (k, s),
Yd(k—1,s) 1s the (first-order) carryover or residual effect due to treatment d(k — 1, 5) assigned to subject
s in the preceding period (by convention y4(o,s) = 0), and i is the measurement error. We also assume
that &’s are independent and identically distributed random variables with mean zero and a common
variance 02 and that gx’s are independent and identically distributed random variables with mean zero
and a common variance o2. In addition, we assume the £;’s and & ’s to be independent. The assumptions
on the random effects in model (1) imply that the responses have a block-diagonal, compound-symmetry
covariance matrix, with each block being the covariance matrix for an individual subject.

2.2. With baseline covariates

When baseline covariates are accounted for, we assume the response models (conditional models) based
on the two aforementioned baseline methods to be

VislZ1s = 1+ ar + & + Tagk,s) + Yde—1,5) + BrZ1s + &ks (2)

and

Vis|Zhs = I+ ok + & + Tak,s) + Vak—1,5) + Bk Zks + Eks- 3)

where zj, is the baseline value obtained for subject s in period k (k = 1 corresponds to the study
baseline), By is the corresponding regression coefficient, and all other effects and assumptions are
analogous to those presented in model (1). However, owing to potential variability accounted for by
the baseline covariates, the variances (conditional) of the random effects & and e, in the conditional
models (2) and (3) are expected to be no greater (and quite often smaller) than those (US2 and (752) in model
(1). To address this difference and to be consistent with model (1), we assume that at the design stage
(i.e., before data collection), the combined data of baselines and responses follow a multivariate normal
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distribution with the same covariance structure as that for model (1) if ignoring the matrix dimensions.
Such a distributional assumption will enable us to obtain the covariance matrices for the conditional
models (2) and (3), to be shown in the Appendix. Following the convention in analysis of covariance, the
assumption of baseline comparability (i.e., the expected values of baselines for all treatment groups are
the same for each period) is also imposed in this article. In conjunction with the assumption of a joint
normal distribution, this requirement ensures that both models (2) and (3) provide unbiased predictors
of the responses and thus unbiased estimators of treatment effects.

3. The relative efficiency

When unbiased inferences are made based on two statistical procedures (a procedure can be an estima-
tor, a model, a design, etc.), relative efficiency is a measure used to evaluate how ‘good’ (efficient) one
procedure is with respect to the other one. The actual definition of such a measure varies depending on
the context, but in all cases, it reflects the sample size requirement for obtaining the same precision (and
thus power) of inferences under the two procedures. When a single parameter of interest is involved,
for example, the relative efficiency of an unbiased estimator 77 compared with another unbiased
estimator 73 is defined to be the reciprocal of the ratio of their variances. An efficiency of 2 for 7}
relative to 7, would suggest that the sample size for 7, should be twice (or approximately twice) as
much as that for 77 in order to achieve the same precision for the two estimators. To avoid confusion,
the term ‘relative efficiency’ used throughout this article should be interpreted as relative efficiency for
treatment comparisons.

For the purpose of this article, we shall be particularly interested in a large class of crossover designs
that are extensively used in applications, namely the totally balanced designs defined by Kunert and
Stufken [11]. Such designs have strong practical appeal and have been revealed to be optimal or highly
efficient in most situations under model (1) [10]. Many useful crossover designs (such as balanced
uniform designs [12], which in turn include the well-known Williams designs as a special case, and
designs constructed from mutually orthogonal Latin squares) belong to such a class. For those who are
not familiar with totally balanced designs obtained from mutually orthogonal Latin squares, an example
of such a design is given as follows, where the rows correspond to the periods, the columns correspond
to the subjects/sequences, and the entries 1,2, 3, 4 stand for the treatments.

1 11 2 2 2 3 3 3 4 4 4
23 413 412 41 23
4 2 3 3 41 412 2 31

We shall now present our main results for comparing the efficiency of totally balanced designs between
the model (1) and each of the models (2) and (3). We evaluate the relative efficiency based on the
universal optimality criteria defined by Kiefer [13], which is particularly relevant when all treatment
effects are of equal interest. The definition of the universal optimality is mathematically involved and
thus omitted here. The interested reader is referred to Kiefer [13] for more details.

Theorem 1
Let RE® and REP? be the relative efficiency of a totally balanced design with p < ¢ under models (2)
and (3), respectively, as compared with model (1); then

Jap (@1 +60)71)

RES < g p(0) = (4)
ga.p)(0) Fam(©
and
61+ po)~)
REP? < hyy ) (0) = 202 , 5
.0 (@) Tam@ 5)
where 6 = 02 /02 and
(t—=p) (p—D(tx +1)*

Jep®) =(p—1+

P 204 pr2 10— 5 — e |
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Moreover, if p = ¢, then
1
RE* <1 6
+(z2—t—2)(z3—2z) ©)

and
1

t2—1—-2)2t2 -2t —-1)"

REP? <1+ @)

The proof of Theorem 1 is given in the Appendix.

The general upper bounds given by (4) and (5) have to be evaluated numerically for a given 0. The
results given by (6) and (7) for the special case p =t are quite informative because they do not depend
on 6. For example, if p = ¢ = 3, then RE® < 1+ 1/84 ~ 1.012 and RE?¢ < 1 + 1/44 ~ 1.023, and if
p=t=4then RE° <1+ 1/560 ~ 1.002 and REPY <1+ 1/230 & 1.004. It is clear that these bounds
monotonically and quickly tend to 1 as ¢ increases.

Tables I and IT show the numerical results (rounded to the third decimal position) of the upper bound
functions g, ,)(0) and h, p)(0) for totally balanced designs with 2 < p <t < 9. We exclude the
cases where t = 6 with p # 6 because it is not known if a totally balanced design exists for such

Table I. The upper bound (g(;. ) (6)) of the relative efficiency RE®.
P t p=0.5 p=0.6 p=0.7 p=0.8 p=0.9 p=0.99
2 2 1.333 1.563 1.961 2.778 5.263 50.251
3 1.229 1.347 1.510 1.743 2.093 2.593
4 1.220 1.331 1.480 1.688 1.989 2.400
5 1.218 1.325 1.471 1.671 1.959 2.346
7 1.216 1.322 1.465 1.660 1.939 2.310
8 1.215 1.321 1.463 1.658 1.935 2.303
9 1.215 1.321 1.462 1.656 1.932 2.298
3 3 1.007 1.009 1.009 1.010 1.011 1.012
4 1.042 1.051 1.059 1.067 1.074 1.080
5 1.058 1.072 1.085 1.097 1.108 1.118
7 1.074 1.092 1.110 1.127 1.144 1.158
8 1.079 1.098 1.118 1.136 1.154 1.170
9 1.082 1.103 1.123 1.143 1.162 1.179
4 4 1.001 1.001 1.001 1.002 1.002 1.002
5 1.016 1.018 1.020 1.022 1.023 1.025
7 1.030 1.035 1.040 1.044 1.047 1.050
8 1.035 1.040 1.046 1.050 1.054 1.057
9 1.038 1.044 1.050 1.055 1.060 1.063
5 5 1.000 1.000 1.000 1.000 1.000 1.000
7 1.013 1.014 1.016 1.017 1.018 1.018
8 1.016 1.018 1.020 1.022 1.023 1.024
9 1.019 1.022 1.024 1.025 1.027 1.028
6 6 1.000 1.000 1.000 1.000 1.000 1.000
7 1.004 1.005 1.005 1.005 1.006 1.006
8 1.008 1.008 1.009 1.009 1.010 1.010
9 1.010 1.011 1.012 1.012 1.013 1.014
7 7 1.000 1.000 1.000 1.000 1.000 1.000
8 1.003 1.003 1.003 1.003 1.003 1.004
9 1.005 1.005 1.006 1.006 1.006 1.006
8 8 1.000 1.000 1.000 1.000 1.000 1.000
9 1.002 1.002 1.002 1.002 1.002 1.002
9 9 1.000 1.000 1.000 1.000 1.000 1.000

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 956-963




Statistics

Z.YAN
. _____________________________________________________________________________|
Table IL. The upper bound (4. »)(6)) of the relative efficiency REP9 .
V4 t p=0.5 p=0.6 p=0.7 p=038 p=0.9 p=0.99
2 2 1.500 1.818 2.361 3.462 6.786 66.779
3 1.350 1.515 1.739 2.053 2.519 3.181
4 1.337 1.492 1.697 1.978 2.380 2.923
5 1.333 1.485 1.684 1.955 2.339 2.851
7 1.331 1.480 1.676 1.940 2312 2.803
8 1.330 1.479 1.674 1.937 2.307 2.794
9 1.330 1.478 1.673 1.935 2.303 2.787
3 3 1.014 1.016 1.018 1.020 1.021 1.023
4 1.087 1.103 1.118 1.131 1.144 1.154
5 1.121 1.145 1.167 1.188 1.208 1.224
7 1.153 1.186 1.217 1.246 1.273 1.297
8 1.162 1.197 1.231 1.262 1.293 1.318
9 1.168 1.205 1.241 1.275 1.307 1.335
4 4 1.003 1.003 1.004 1.004 1.004 1.004
5 1.041 1.046 1.051 1.054 1.058 1.060
7 1.079 1.090 1.099 1.107 1.114 1.120
8 1.089 1.102 1.113 1.123 1.131 1.138
9 1.097 1.111 1.124 1.134 1.144 1.151
5 5 1.001 1.001 1.001 1.001 1.001 1.001
7 1.040 1.044 1.047 1.050 1.052 1.054
8 1.051 1.056 1.061 1.064 1.067 1.070
9 1.059 1.066 1.071 1.075 1.079 1.082
6 6 1.000 1.001 1.001 1.001 1.001 1.001
7 1.016 1.017 1.018 1.019 1.020 1.021
8 1.027 1.030 1.031 1.033 1.034 1.035
9 1.036 1.039 1.041 1.043 1.045 1.046
7 7 1.000 1.000 1.000 1.000 1.000 1.000
8 1.011 1.012 1.013 1.013 1.014 1.014
9 1.020 1.021 1.022 1.023 1.024 1.025
8 8 1.000 1.000 1.000 1.000 1.000 1.000
9 1.009 1.009 1.010 1.010 1.010 1.010
9 9 1.000 1.000 1.000 1.000 1.000 1.000

situations. Here p = 6(1 + 0)~! is the within-subject correlation varying from 0.5 to 0.99, which covers
a reasonable range for most practical applications. We observe that both tables show similar patterns of
changes in the functions g, (@) and A, ,)(0), and because g, »)(0) < h, p)(0) (because f(;,p)(x) is
decreasing in x), all the entries in Table I are consistently smaller than those in Table II. This difference,
however, is almost negligible if p(5# 2) and ¢ are close or if p is relatively large.

For p > 2, we note that if p and ¢ are close enough, then the potential increase in efficiency due to
inclusion of baseline covariates is typically extremely limited, which is more so when p is relatively
large. Even otherwise, the increase in efficiency is at most moderate (RE® < 1.179 and REP? < 1.335),
and this may occur only when ¢ is much bigger than p while p is small (e.g., p = 3). It is conceivable
that if p and ¢ are very close, then most (if not all) of the information about the treatment effects for a
totally balanced design under model (1) is provided by within-subject comparisons (in other words, the
design is highly efficient), and thus, very little or no additional information can be obtained by inclusion
of baseline covariates. On the other hand, if ¢ is relatively large compared with p, then more between-
subject information is expected to be used for treatment comparisons, therefore leaving room for using
baseline information.
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The results for p = 2 appear to be quite different; however, the interpretations of these results are
straightforward. When p = ¢ = 2, the totally balanced design is the standard 2 x 2 crossover design. It
is well known that if carryover effects are accounted for, then any unbiased estimator of the treatment
effects under such a design has to rely on the data from the first period only. In such a situation, the
crossover design does not provide any within-subject information for the treatment effects and therefore
performs just like a parallel design. The results for p = ¢ = 2 simply reveal the fact that in theory
the efficiency increase for a parallel design can be arbitrarily large (as p approaches to 1) once base-
line covariates are fitted. When p = 2 and ¢ > 2, a totally balanced design does use the data from both
periods; however, it is also well known that such designs are in general not efficient owing to the presence
of carryover effects. It is therefore not a surprise that baseline covariates could make a big impact on the
efficiency of statistical analyses.

4. Discussion

We have delivered an important message in this short article: when a crossover design is highly effi-
cient, that is, when most of the information about the treatment effects is provided by within-subject
comparisons, the baseline covariates in general have very limited impact on the efficiency of statistical
analyses. For a less efficient crossover design, however, baseline covariates could turn out to be impor-
tant. Even though these findings are based on models assuming carryover effects, we are quite confident
that such a statement remains valid for other different models as well. To support this optimism, we shall
give two illustrating examples while considering models (1) and (3) without the carryover effects. The
first example is the standard 2 x 2 crossover design, which is highly efficient without the carryover effects
(indeed the treatment effects are entirely based on the within-subject comparisons). It can be shown that
REP4 < 1 holds for any p. In such a situation, ironically, inclusion of baseline covariates can only do
harm to the efficiency owing to the loss of certain degrees of freedom when estimating the error variance
in the data analysis. The second example is a totally balanced design with p = 2 and t = 9, which is
slightly less efficient because the treatment effects are more or less (depending on p) based on between-
subject information. Numerical computation shows that the upper bound for RE? d ranges between 1.200
and 1.494 when p varies from 0.5 to 0.99.

We have considered two different baseline methods, although the period-dependent baselines seem to
be more often used in practice. However, if potential confounding between ‘late-period’ (those other than
the first period) baselines and other model effects is suspected, which seems to be a legitimate concern
for crossover designs, then the study baseline method is more relevant and thus preferred. In addition,
we have also assumed different regression coefficients for baseline covariates fitted for different periods
(i.e., baseline-by-period interaction effects). If a common regression coefficient is considered instead,
then all the upper bounds obtained in Theorem 1 are still valid (see the proof in the Appendix).

We have adopted a simple compound (complete) symmetry covariance structure for all the
measurements (both baselines and responses) made on the same subject. This assumption not only makes
our problem mathematically more tractable but is also reasonable and quite sufficient in many applica-
tions. For example, the measurement errors (gx;’s) made on the same subject could be assumed to be
autocorrelated (e.g., AR(1)), but in practice, the addition to the overall covariance due to such an error
correlation is often negligible as compared with the covariance due to the within-subject correlation. For
a totally balanced design with p > 2, we believe that the baseline covariates will have more impact on
the efficiency if the within-subject correlation between the baseline and the response is much higher than
that between the responses themselves (i.e., the baselines are more informative than the responses). But
we also feel that such an assumption is unlikely to be supported in the data analysis.

Finally, it is interesting to note that our conclusions are consistent with those reported by Liang and
Carriere [8]. Although their findings were based on a relatively small class of crossover designs (t = 2
and p = 2, 3, and 4) with different assumptions on the carryover effects and a different baseline approach
(baselines were modeled as additional responses).

Appendix A

Proof of Theorem 1
The proofs for RES and RE? 4 are similar, so here we only provide necessary details for RE?P4.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2013, 32 956-963




Statistics

Z. YAN

Let 1,4, I,, and J, denote the column vector with all a entries equal to 1, the a x a identity matrix,
and the a x a matrix with all entries equal to 1, respectively. For any @ x b matrix X, we define
priX)=1,—XXTX)"XT, where (XT X)~ is a generalized inverse of X7 X,

In matrix form, the mean response under models (1) and (3), respectively, can be written as

EY)=1ppu+Pa+Tat+ Fgy (3)
and
D
E(Y|Z)=1pup+ Pa+Tqr+Fay+ Y ZiPr. )
k=1

where Y is the column vector of the responses that are ordered period by period for each subject
in turn; o, 7, and py are the column vectors of the period, treatment, and carryover effects with P,
T ;, and F; being the corresponding design matrices, respectively; Z is the column vector of the

period-dependent baseline covariates; and Z (k =1, ..., p) is the vector obtained from Z by keeping
the entries Zx1, 22, - .., Zkn (i.€., the baseline covariates for the kth period) while replacing all other
ones by 0.

Our assumptions in Sections 2.1 and 2.2 imply that cov(Y) = 02V, and cov([YT,ZT|T) =
o2l @ Vo+ (Jo—I2) ® V], where Vo = I, ® (I, + 0J,) with § = 02/02 and ®
being the Kronecker product and 02V, = 02(I, ® J ) is the covariance matrix between Y and
Z. The covariance matrix of ¥ conditioning on Z is then given by cov(Y|Z) = o2V, where
Vi=Vo—VyzVye'Viz =1, [, +0(1+ po)~'J,].

The Fisher information matrices, denoted by C ,(6) and C (0| Z), for the direct treatment effects t
under models (8) and (9), respectively, can be expressed as

_1 _1 _1
C.0)=TIv,>prt (VO 2[1pn, P, Fd]) Vy>Tya
and

_1 _1 _1
C.01Z2)=TLVv > prt (V1 2 pn, P,Fd,Zl,...,Z,,]) VT4, (10)

_1 1 _1 1
with V2V 2 =Vy'and V2V 2 =V L

An upper bound for C ; (6| Z), in the Loewner sense (i.e., A < B if and only if A — B is non-negative
definite), can be obtained by ignoring all Z, ..., Z , on the right-hand side of (10). That is,

_1 _1 _1
C.001Z)<Thv ?prt (V1 >[pn, P, Fd]) V2T a=Co(0(1+ po)™h),

with equality if the columns of Z belong to the column span of the matrix [1,,, P, F 4] (note that

Z=Y7_ 7))

In light of Hedayat et al. [10], for any totally balanced design with p < ¢, C,(0) is completely
symmetric (compound symmetric) with trf[C . (0)] = n - f p)(0), where f ,)(0) is as defined in
Theorem 1. On the basis of Kiefer’s universal optimality criteria, we would have

tr[Ce (0 + pO)™] _ fup(@1+ pO)~")
t[C - (6)] Je.p (@)

For the special case p = ¢, it can be shown that /1, ;) (6) is non-decreasing in 6 for any ¢. Indeed, with
the help of the mathematical software MAPLE, we can obtain

Ohay(0) 0@ —1)2[0(3r* — 61> — 212 + 51 + 1) + 217 — 4% 4 2]
a0 _t[9(2t2—2t—1)—H—1]2[9(12—t—l)+t—l]zf(f’t)(G)’

REP? <

:h(,,p)(e). (11

which is non-negative for any # and 6. Now we take 6 = oo in (11); then simple algebra yields

1
t2—1t—-2)2t2 =2t —1)"

REP? <1+

|
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