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Abstract

We investigate the performance of crossover designs based on type I orthogonal arrays for a self and simple mixed carryover
effects model in the presence of correlated errors. Assuming that between-subject errors are independent while within-subject errors
behave according to the stationary first-order autoregressive and moving average processes, analytical optimality results for 3-period
designs are established and, as an illustration, numerical details for a number of 4-period cases are tabulated.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In crossover designs, experimental subjects (units) are repeatedly exposed to a sequence of different or identical
treatments. An observation on a subject may not only be affected by the treatment assigned most recently to this subject,
but could also be affected by lingering effects of treatments that the subject received in earlier periods. Such lingering
effects are known as carryover (or residual) effects.

The traditional model for crossover designs assumes that each treatment has a carryover effect that does not interact
with the direct effect of the treatment applied in the next period. From many points of view, practical and theoretical, this
seems to be the most plausible model and therefore has received tremendous attention in literature. Selected references
include Hedayat and Afsarinejad (1978), Cheng and Wu (1980), Kunert (1983, 1984), Matthews (1987, 1990), Hedayat
and Zhao (1990), Stufken (1991, 1996), Kushner (1997, 1998), and Hedayat and Yang (2003, 2004, 2005). But in
certain situations good arguments can also be made for other models. For example in sensory experiments of medical
interventions, it is more convincible to assume that the carryover effects depend on the treatment in the following
period. To deal with such situations, Afsarinejad and Hedayat (2002) suggested an alternative model that contains two
types of carryover effects, one is called a self carryover effect if a treatment is followed by itself and the other one
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is called a simple mixed carryover effect if a treatment is followed by any other treatment. Under this latter model,
Kunert and Stufken (2002) proved that a totally balanced design is universally optimal for all direct treatment effects
over the class of all designs with t treatments, n subjects and p periods, as long as t �3 and 3�p�2t . They assumed,
like most other researchers have done in literature, that all observations on the n subjects are uncorrelated. In many
situations, such a simple assumption is technically desirable but practically questionable, in the context of crossover
designs it is often reasonable to argue that the error terms are actually correlated if they correspond to measurements
on the same subject. One way to look at such a correlation structure is to consider the p observations for a subject a
short time series and hence the entire set of observations as n time series.

The main purpose of the present paper is to identify a class of optimal and efficient designs-type I orthogonal arrays
for the self and simple mixed carryover effects model with correlated errors. We shall be particularly concerned with the
cases where the errors within each subject follow the stationary first-order autoregressive (AR(1)) and moving average
(MA(1)) processes, but our method can also be used in conjunction with correlation structures of other forms. Due to
certain technical hurdles we will only consider 3- and 4-period cases in this article, but fortunately designs with small
number of periods are attractive to practitioners and thus tend to be used more often in practice. For both AR(1) and
MA(1) structures with any correlation coefficient for which stationarity holds, we prove that type I orthogonal arrays
are universally optimal for direct effects over all designs with p=3 and t �3. For the case with p=4, numerical results
based on t = 4, 5 and 7 show that type I orthogonal arrays are highly efficient and are very likely to be optimal. The
important case of 2-period designs is not addressed here because the within-subject error structure has no impact on
the optimality of designs. The interested reader is referred to Afsarinejad and Hedayat (2002) for more details about
the 2-period studies under the homoscedastic model.

The statistical tool we employ in this paper was developed by Kunert and Martin (2000a) who generalized the results
of Kushner (1997). The tool relates the problem of identifying designs with maximal traces of information matrices to
a minimax problem of a sequence of bivariate quadratic functions, which are solely determined by design parameters
and the error variance–covariance structure.

2. Notations and preliminary results

We start with the following notations.
By 1a and 0a we will mean the a ×1 vectors of 1s and 0s, respectively. By Ia , 0a×b and Ja×b we will mean the a ×a

identity matrix, the a × b matrix with all entries equal to 0 and the a × b matrix with all entries equal to 1, respectively.
For simplicity, we may drop the subscripts if doing so will not cause any confusion. Finally, we will denote the class
of all crossover designs with t treatments, n subjects and p periods by �t,n,p.

We assume that the response yij obtained from subject j at period i, where j ∈ {1, . . . , n} and i ∈ {1, . . . , p}, can
be written as

yij =
{

�i + �j + �d(i,j) + �d(i−1,j) + εij if d(i, j) �= d(i − 1, j),

�i + �j + �d(i,j) + �d(i−1,j) + εij if d(i, j) = d(i − 1, j).
(1)

Here:

(i) d(i, j) ∈ {1, . . . , t} denotes the treatment assigned to subject j in period i;
(ii) �i is the effect due to the ith period;

(iii) �j is the effect due to the j th subject;
(iv) �d(i,j) is the direct effect due to treatment d(i, j);
(v) �d(i−1,j) is the simple mixed carryover effect due to treatment d(i − 1, j) (with �d(0,j) = 0);

(vi) �d(i−1,j) is the self carryover effect due to treatment d(i − 1, j) (with �d(0,j) = 0) and
(vii) εij is the non-observable random error term.

All effects (except for εij ) considered in model (1) are assumed to be fixed but unknown. We also assume that the
errors between different subjects are uncorrelated, while the errors associated with the p observations within each
subject have mean zero and a common variance–covariance matrix �2	, where �2 is an unknown scalar and 	 is a
known p × p positive definite matrix, to be specified later.
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In matrix notation, model (1) can be written as

Y = P� + U� + Td� + Md� + Sd� + ε, (2)

where Y = (y11, y21, . . . , ypn)
T, � = (�1, . . . , �p)T, � = (�1, . . . , �n)

T, � = (�1, . . . , �t )
T, � = (�1, . . . , �t )

T, � =
(�1, . . . , �t )

T, ε = (ε11, ε21, . . . , εpn)
T; the matrices P = 1n ⊗ Ip , U = In ⊗ 1p, Td = (T T

d1, . . . , T
T
dn)

T, Md =
(MT

d1, . . . , M
T
dn)

T and Sd =(ST
d1, . . . , S

T
dn)

T are, respectively, the design matrices of the period, subject, direct treatment,
simple mixed carryover and self carryover effects; while Tdu, Mdu and Sdu are the corresponding design matrices
for a single subject u, 1�u�n; and ⊗ denotes the Kronecker product. Our assumptions on the errors imply that
Cov(ε) = �2(In ⊗ 	).

For any a × b matrix X, we define 
⊥(X) = Ia − X(XTX)−XT, where (XTX)− is a generalized inverse of XTX,
thus 
⊥(X) stands for the projection onto the space spanned by the vectors that are orthogonal to the column space of
X. Then the information matrix Cd(�) for the direct treatment effects � can be written as

Cd(�) = T T
d (In ⊗ 	−1/2)
⊥((In ⊗ 	−1/2)[P, U, Md, Sd ])(In ⊗ 	−1/2)Td ,

where 	−1/2 is the p × p matrix with the property 	−1/2	−1/2 = 	−1. Note that because Td1t and U1n are equal, we
have that the row and column sums of Cd(�) are all equal to zero for any design d ∈ �t,n,p.

We are interested in optimal designs for the direct treatment effects � (and suppose that all elementary treatment
contrasts are of equal interest). It follows from Kiefer’s (1975) Proposition 1 that a design d∗ for which the information
matrix Cd∗(�) is completely symmetric and maximizes Tr[Cd(�)], the trace of Cd(�), over all d ∈ �t,n,p is universally
optimal for �. Complete symmetry of a matrix X means that it can be written as X = a1I + a2J , where a1 and a2 are
real numbers.

Following Kunert and Stufken (2002), we shall determine an upper bound for the information matrix Cd(�) and
show that this upper bound can be attained by designs with certain properties. Let C̃d(�) be the information matrix for
� under the model obtained by deleting P� in (2), i.e.,

C̃d(�) = T T
d (In ⊗ 	−1/2)
⊥((In ⊗ 	−1/2)[U, Md, Sd ])(In ⊗ 	−1/2)Td .

Then as in earlier work by Kunert (1983), we have Cd(�)�C̃d(�) in the Loewner sense, i.e., C̃d(�) − Cd(�) is
non-negative definite, with equality if and only if the following orthogonality condition is satisfied

T T
d (In ⊗ 	−1/2)
⊥((In ⊗ 	−1/2)[U, Md, Sd ])(In ⊗ 	−1/2)P = 0. (3)

Before giving sufficient conditions on a design under which (3) is fulfilled, we need the following terminology.
A design d ∈ �t,n,p is said to be

(a) Invariant on the periods for the direct effects if each treatment in d appears equally often in each of the p periods.
(b) Invariant on the periods for the self carryover effects if for each treatment in d the self carryover effect due to the

treatment appears equally often in each of the last p − 1 periods.
(c) Invariant on the periods for the simple mixed carryover effects if for each treatment in d the simple mixed carryover

effect due to the treatment appears equally often in each of the last p − 1 periods.

Now we are ready to present

Lemma 1. If a design d ∈ �t,n,p is invariant on the periods for the direct effects, the self and simple mixed carryover
effects, then Eq. (3) holds for any p × p positive definite matrix 	.

Proof. Since 	 is positive definite, so is 	−1. Let �ij be the (i, j)th entry of 	−1, then it can be verified that the 2 × 2

matrix D =
(

�11∑p
k=2�k1

∑p
k=2�1k∑p

k=2
∑p

l=2�kl

)
is also positive definite. In fact, D = QT	−1Q, where QT =

(
1 01×(p−1)

0 11×(p−1)

)
.

Consequently, there is a set of xi and yi , for i = 1, . . . , p, such that they are solutions to the following system of linear
equations:{

�11xi + (
∑p

k=2�1k)yi = �1i ,

(
∑p

k=2�k1)xi + (
∑p

k=2

∑p
l=2�kl)yi = ∑p

k=2�ki .
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Define

G =
(

x1 x2 . . . xp

y1J(p−1)×1 y2J(p−1)×1 . . . ypJ(p−1)×1

)
,

then it can be verified that

(i) the first row of the matrix 	−1(Ip − G) is 01×p; and
(ii) all column sums of 	−1(Ip − G) are zeros.

Let A = 1n ⊗ G and B = P − A = 1n ⊗ (Ip − G).
Since design d is invariant on the periods for the direct effects, we have

T T
d (In ⊗ 	−1)B = T T

d {1n ⊗ (	−1(Ip − G))} =
⎛⎝ n∑

j=1

T T
dj

⎞⎠ {	−1(Ip − G)} = 0t×p.

Similarly, due to the invariance properties of the self and simple mixed carryover effects, we have

((In ⊗ 	−1/2)[U, Md, Sd ])T(In ⊗ 	−1/2)B = [U, Md, Sd ]T{1n ⊗ (	−1(Ip − G))}
= 0(n+2t)×p.

Let H =
(

x1Jn×1 x2Jn×1 . . . xpJn×1

(y1 − x1)J2t×1 (y2 − x2)J2t×1 . . . (yp − xp)J2t×1

)
, then we obtain

[U, Md, Sd ]H = A,

and thus

(In ⊗ 	−1/2)A = (In ⊗ 	−1/2)[U, Md, Sd ]H ,

which implies that the column span of (In ⊗ 	−1/2)A is in that of (In ⊗ 	−1/2)[U, Md, Sd ] and therefore


⊥((In ⊗ 	−1/2)[U, Md, Sd ])(In ⊗ 	−1/2)A = 0.

Accordingly we have

T T
d (In ⊗ 	−1/2)
⊥((In ⊗ 	−1/2)[U, Md, Sd ])(In ⊗ 	−1/2)P

= T T
d (In ⊗ 	−1/2)
⊥((In ⊗ 	−1/2)[U, Md, Sd ])(In ⊗ 	−1/2)(A + B)

= T T
d (In ⊗ 	−1/2)
⊥((In ⊗ 	−1/2)[U, Md, Sd ])(In ⊗ 	−1/2)B

= T T
d (In ⊗ 	−1)B

= 0. �

Following Kunert and Martin (2000a) and Kunert and Stufken (2002), we can decompose C̃d(�) as follows:

C̃d(�) = T T
d (In ⊗ 	−1/2)
⊥((In ⊗ 	−1/2)[U, Md, Sd ])(In ⊗ 	−1/2)Td

= Cd11 − Cd12C
−
d22C

T
d12 − (Cd13 − Cd12C

−
d22Cd23)

× (Cd33 − CT
d23C

−
d22Cd23)

−(Cd13 − Cd12C
−
d22Cd23)

T,

where

Cd11 = T T
d (In ⊗ W)Td, Cd12 = T T

d (In ⊗ W)Md, Cd22 = MT
d (In ⊗ W)Md ,

Cd13 = T T
d (In ⊗ W)Sd, Cd23 = MT

d (In ⊗ W)Sd, Cd33 = ST
d (In ⊗ W)Sd ,
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and

W = 	−1 − (1T
p	−11p)−1	−11p1T

p	−1.

Let Bt=
⊥(1t ), and for any design d ∈ �t,n,p we define cdij =Tr[BtCdijBt ]=Tr[BtCdij ] for 1� i�j �3. Following
the proof of Proposition 2 in Kunert and Martin (2000a), with minor modifications, we obtain Tr[C̃d(�)]�q∗

d for any
design d ∈ �t,n,p, with equality if all matrices Cdij , 1� i�j �3, are completely symmetric, where q∗

d is defined by
the following four cases:

1. if cd22cd33 − c2
d23 > 0, then q∗

d = cd11 − (c2
d12cd33 − 2cd12cd13cd23 + c2

d13cd22)/(cd22cd33 − c2
d23) ;

2. if cd22cd33 − c2
d23 = 0 and cd22 > 0, then q∗

d = cd11 − c2
d12/cd22 ;

3. if cd22 = 0 and cd33 > 0, then q∗
d = cd11 − c2

d13/cd33; and
4. if cd22 = cd33 = 0, then q∗

d = cd11.
In all, it follows that the inequalities

Tr[Cd(�)]�Tr[C̃d(�)]�q∗
d

hold for every design d ∈ �t,n,p, and that the equalities

Tr[Cd(�)] = Tr[C̃d(�)] = q∗
d

hold if (3) holds and if all matrices Cdij , 1� i�j �3, are completely symmetric. We shall soon see that a class of
designs with these properties is the class of type I orthogonal arrays of strength 2, denoted by OAI (n, p, t, 2). An
OAI (n, p, t, 2) is a p × n array with entries from {1, . . . , t} such that any 2 × n sub-array contains all t (t − 1) ordered
pairs without repetition equally often. Clearly, such an array exists only if p� t and if n is an integer multiple of t (t −1).
It is also well known that an OAI (t (t − 1), p, t, 2) exists for any p� t if t is a prime power (see Rao, 1961).

Type I orthogonal arrays were introduced by Rao (1961). Such arrays have been recently revealed to possess many
desirable properties, including balance, high efficiency and optimality (see Majumdar and Martin, 2004). In the presence
of correlated errors (especially in crossover designs), type I orthogonal arrays seem to be quite promising to produce
efficient designs. Unfortunately, very little research has been done to exploit these arrays in applications beyond the
traditional model.

If a crossover design d∗ uses an OAI (n, p, t, 2) with columns corresponding to subjects and rows corresponding to
periods, then obviously it is invariant on the periods for the direct effects, the self and simple mixed carryover effects and
thus by Lemma 1 Eq. (3) holds. Since such a design has no pairs of consecutive identical treatments on the same subject,
thus Sd∗=0, then Cd∗13, Cd∗23 and Cd∗33 are all matrices of zeros, therefore, Cd∗(�)=C̃d∗(�)=Cd∗11−Cd∗12C

−
d∗22C

T
d∗12.

Note also that Md∗ = (In ⊗ L)Td∗ , where L is the p × p matrix with all (i + 1, i)th entries equal to 1 and 0 otherwise,
then Cd∗11 = T T

d∗(In ⊗ W)Td∗ , Cd∗12 = T T
d∗(In ⊗ (WL))Td∗ , and Cd∗22 = T T

d∗(In ⊗ (LTWL))Td∗ , thus by Martin and
Eccleston (1998), we conclude that Cd∗11, Cd∗12, Cd∗22 and Cd∗(�) are all completely symmetric. If we can further
show that q∗

d is maximized by d∗, then d∗ would accordingly be universally optimal.
In what follows, we proceed along the lines of Kunert and Martin (2000a) to deduce an upper bound for q∗

d that is
independent of any design d . By writing

c
(u)
d11 = Tr[Bt(T

T
duWT du)], c

(u)
d12 = Tr[Bt(T

T
duWMdu)],

c
(u)
d13 = Tr[Bt(T

T
duWSdu)], c

(u)
d22 = Tr[Bt(M

T
duWMdu)],

c
(u)
d23 = Tr[Bt(M

T
duWSdu)], c

(u)
d33 = Tr[Bt(S

T
duWSdu)],

for u ∈ {1, . . . , n}, we then obtain cdij = ∑n
u=1c

(u)
dij , for 1� i�j �3.

Note that the c
(u)
dij ’s are determined by the sequence of treatments assigned to subject u. We say that two treatment

sequences are equivalent, if one can be transformed to the other by relabelling the treatments. It is obvious that two
equivalent treatment sequences give the same c

(u)
dij ’s. Therefore, for given t and p, we can partition the set of all
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possible treatment sequences into K equivalence classes s1, . . . , sK , such that c
(u)
dij ’s are the same for all subject u

receiving a sequence from a given class. We denote by �d� the proportion of subjects receiving sequences from the
class s�, 1���K , in a given design d ∈ �t,n,p. We also define cij (�) = c

(u)
dij , where u is any subject receiving a

sequence from the �th class s�. Then we obtain

cdij = n

K∑
�=1

�d�cij (�) (4)

for 1� i�j �3. This implies that the bound q∗
d of any design d ∈ �d,n,p is determined by the proportions �d�. However,

q∗
d is a non-linear function of the �d�, which makes the maximization of q∗

d difficult. The problem is linearized by
introducing the function

qd(x, y) = cd11 + 2xcd12 + x2cd22 + 2ycd13 + y2cd33 + 2xycd23.

By the Proposition 3 in Kunert and Martin (2000a), we have that q∗
d �qd(x, y) for every x and y and that there is at

least one point, (x∗, y∗), say, such that q∗
d = qd(x∗, y∗). We will see in Section 4 that the determination of (x∗, y∗) is

a critical step in the identification of optimal designs.
For the �th equivalent class s�, 1���K , we define

h�(x, y) = c11(�) + 2xc12(�) + x2c22(�) + 2yc13(�) + y2c33(�) + 2xyc23(�),

and obtain

qd(x, y) = n

K∑
�=1

�d�h�(x, y),

which is a linear combination of the h�(x, y). We immediately have

Lemma 2. For any design d ∈ �t,n,p, we have the following inequality:

q∗
d �n min

x,y
max

�
h�(x, y).

Proof.

q∗
d � min

x,y
qd(x, y) = min

x,y

{
n

K∑
�=1

�d�h�(x, y)

}

�n min
x,y

{
K∑

�=1

�d�

[
max

�
h�(x, y)

]}
= n min

x,y
max

�
h�(x, y). �

3. Main results for AR(1) correlation structure

To determine minx,y max� h�(x, y), we need to calculate, for � ∈ {1, . . . , K}, cij (�)’s which by definition depend,
through the matrix W , on the covariance matrix 	. It is therefore necessary to specify the within-subject correlation
structure. Throughout this section we assume that the errors within each subject follow a stationary first-order autore-
gressive (AR(1)) process. Then the (i, j)th entry of the matrix 	 can be written as �|i−j |/(1 − �2), 1� i, j �p, with
−1 < � < 1 being the correlation coefficient. We also assume that � is known, which allows us to calculate the weighted
least-square estimate for direct treatment effects.
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Table 1
Equivalence classes and cij (�)’s for p = 3 and t �3 (AR(1))

� Sequence c11(�) c12(�) c13(�) c22(�) c23(�) c33(�)

1 [111] 0 0 0 0 0
2(t − 1)

t (3 − �)

2 [112]
4

3 − �
− 2

3 − �
1 + �
3 − �

2(t − 1)

t (3 − �)
− (t − 1)(1 + �)

t (3 − �)

2(t − 1)(1 + �)

t (3 − �)

3 [121]
4(1 + �)

3 − �
− 3(1 + �)

3 − �
0

2t (2 + �) − 2

t (3 − �)
0 0

4 [122]
4

3 − �
− 1 + �

3 − �
1 − �
3 − �

2(t − 1)(1 + �)

t (3 − �)

1 + �
t (3 − �)

2(t − 1)

t (3 − �)

5 [123]
2(3 + �)

3 − �
− 2(1 + �)

3 − �
0

2t (2 + �) − 2

t (3 − �)
0 0

Note that

	−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

1 −� 0 . . . 0 0

−� 1 + �2 −� . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 + �2 −�

0 0 0 . . . −� 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

For any fixed p and t , the computation of cij (�)’s for all equivalence classes can be done with the help of MAPLE.
However, with large p the number K of the equivalence classes increases rapidly and h�(x, y)’s become more compli-
cated to deal with. For example, when p = t = 5 there are 52 classes of equivalent sequences, which makes it almost
impossible to find an analytical solution for minx,ymax�h�(x, y). In fact, we will see in the sequel that even for p = 4
an analytical solution for minx,ymax�h�(x, y) is unlikely to be available and has to be obtained by computer search.
In the present paper we will only consider the cases with p = 3 and 4, which are very popular in practical applications.

For the case p = 3 and t �3, there are five different classes of equivalent sequences. The representative sequences
and the corresponding cij (�)’s are given in Table 1.

The following important lemma builds on the results in Table 1.

Lemma 3. Let x∗ = t (1 + �)/(2t + t� − 1) with � ∈ (−1, 1), then for p = 3 and any t �3,

h5(x
∗, −1) = min

x,y
max

�∈{1,...,5} h�(x, y).

Proof. Straightforward calculations and calculus arguments yield

h5(x
∗, −1) − h1(x

∗, −1)

= 2(3t2 + 2t2� − 1)

t (3 − �)(2t + t� − 1)
�0 if − 1 < � < 1.

h5(x
∗, −1) − h2(x

∗, −1)

= 2t (1 + �)[t2(3 − � − �2) + t (3 + 8� + 2�2) − (4 + 3�)] + 2

t (3 − �)(2t + t� − 1)2

�

⎧⎪⎪⎨⎪⎪⎩
2t (1 + �)(t2 + 3t − 7) + 2

t (3 − �)(2t + t� − 1)2 �0 if 0�� < 1;
2t (1 + �)(3t2 − 3t − 4) + 2

t (3 − �)(2t + t� − 1)2 �0 if − 1 < � < 0.
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h5(x
∗, −1) − h3(x

∗, −1)

= 2(3t + t� + � − 1)

(3 − �)(2t + t� − 1)
�0 if − 1 < � < 1.

h5(x
∗, −1) − h4(x

∗, −1)

= 2t[t2(3 + � − 2�2 − �3) + t (3 + 10� + 8�2 + 2�3) − (4 + 4� + �2)] + 2

t (3 − �)(2t + t� − 1)2

�

⎧⎪⎪⎨⎪⎪⎩
2t (t2 + 3t − 9) + 2

t (3 − �)(2t + t� − 1)2 �0 if 0�� < 1;
2t (t2 − t − 4) + 2

t (3 − �)(2t + t� − 1)2 �0 if − 1 < � < 0.

Thus we obtain

h5(x
∗, −1) = max

�∈{1,...5} h�(x
∗, −1)� min

x,y
max

�∈{1,...,5} h�(x, y).

On the other hand, it can be verified that h5(x, y) is minimized at (x∗, −1), therefore

max
�∈{1,...,5} h�(x, y)�h5(x, y)�h5(x

∗, −1),

which implies that

min
x,y

max
�∈{1,...,5} h�(x, y)�h5(x

∗, −1),

hence we have

h5(x
∗, −1) = min

x,y
max

�∈{1,...,5} h�(x, y). �

We are now ready to formulate the main result for the case p = 3 and t �3.

Theorem 1. Under model (1) with errors within each subject following a stationary first-order autoregressive process,
for p = 3, t �3 and any � ∈ (−1, 1), a cross-over design d∗ based on an OAI (n, 3, t, 2) with columns corresponding
to subjects and rows corresponding to periods is universally optimal in �t,n,3 for the direct treatment effects.

Proof. The complete symmetry of Cd∗(�) has already been established in the previous section, it remains to show that
d∗ maximizes the trace of Cd(�). Since design d∗ is based on an OAI (n, 3, t, 2), thus all n subjects receive treatment
sequences equivalent to the same sequence [123], i.e., the 5th class in Table 1. Therefore by Eq. (4), we have

cd∗ij = n

5∑
�=1

�d∗�cij (�) = ncij (5).

Observe that cd∗22cd∗33 − c2
d∗23 = 0 and cd∗22 > 0, thus by definition, we obtain

q∗
d∗ = cd∗11 − c2

d∗12/cd∗22 = n{c11(5) − c2
12(5)/c22(5)}.

In addition, h5(x
∗, −1) = minx,yh5(x, y) = c11(5) − c2

12(5)/c22(5), thus by Lemma 3

q∗
d∗ = nh5(x

∗, −1) = n min
x,y

max
�∈{1,...,5} h�(x, y).

Hence by Lemma 2, we obtain q∗
d∗ �q∗

d , for any d ∈ �t,n,3.
We then have, for any d ∈ �t,n,3,

Tr[Cd∗(�)] = q∗
d∗ �q∗

d �Tr[Cd(�)]. �
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Table 2
Numerical values of n minx,y max�h�(x, y) for p = 4 (AR(1))

� −0.99 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4

t = 4, n = 12 31.202 30.689 30.366 30.266 30.345 30.560 30.871
t = 5, n = 20 52.024 51.164 50.619 50.447 50.576 50.934 51.460
t = 7, n = 42 109.299 107.481 106.322 105.946 106.209 106.965 108.085

� −0.3 −0.2 −0.1 0 0.1 0.2 0.3

t = 4, n = 12 31.251 31.684 32.173 32.727 33.371 34.134 35.050
t = 5, n = 20 52.106 52.850 53.689 54.643 55.749 57.053 58.612
t = 7, n = 42 109.474 111.081 112.902 114.975 117.372 120.190 123.542

� 0.4 0.5 0.6 0.7 0.8 0.9 0.99

t = 4, n = 12 36.154 37.486 39.088 41.005 43.292 46.015 48.912
t = 5, n = 20 60.485 62.737 65.435 68.658 72.496 77.061 81.912
t = 7, n = 42 127.551 132.351 138.087 144.922 153.045 162.693 172.935

For p = 4 and t �4, there are 15 equivalence classes. The representative sequences and cij (�)’s for the 15 classes
are given in Table 4 in the Appendix. While the procedure described in the proof of Lemma 3 works nicely for the
case p = 3, it becomes quite cumbersome for the present situation. However, we are able to obtain numerical solutions
of minx,y max� h�(x, y) for fixed � values with the help of MATLAB. Table 2 shows numerical results (rounded to
the third decimal position) of n minx,y max�h�(x, y) for p = 4, t = 4, 5, 7 and a broad range of selected � values
respectively. Since design efficiencies of type I orthogonal arrays do not depend on n, the number of subjects, thus
without loss of generality we simply took n = t (t − 1) in Table 2. Straightforward computations showed that, for all �
considered here, the trace (also rounded to the third decimal position) of the information matrix of the corresponding
type I orthogonal array was equal to n minx,y max�h�(x, y). This implies an efficiency of more than 0.999. It could
even be hopeful that these designs are in deed optimal or highly efficient for any � ∈ (−1, 1).

4. Main results for MA(1) correlation structure

In a first-order moving average (MA(1)) correlation structure, only errors from adjacent periods are correlated. The
within-subject dispersion matrix can be written as 	 = Ip + �Np, where � is the correlation coefficient and lies in the
interval (− 1

2 , 1
2 ) for stationarity, and Np is a p × p matrix with all (i, i + 1)th and (i + 1, i)th entries equal to 1 and 0

otherwise.
If we take x∗ = t/(2t − t� + � − 1) with � ∈ (− 1

2 , 1
2 ) in Lemma 3, then we can show that the corresponding result

also holds for MA(1) correlation structure and consequently optimality of an OAI (n, 3, t, 2) will follow for p = 3 and
t �3. To avoid heavy algebra as shown in Lemma 3, here we use a more succinct argument as follows. First it can be
shown that when p = 3

W = 1

4
 − 1

⎛⎝ 2
 −1 1 − 2


−1 2 −1

1 − 2
 −1 2


⎞⎠ (5)

holds for both AR(1) and MA(1) correlation structures with 
 = 1/(1 + �) for AR(1) and 
 = 1 − � for MA(1) (see
Martin and Pooladsaz, 2005). We also note that the information matrix Cd(�) depends on the covariance matrix 	 only
through W , thus a type I orthogonal array that is universally optimal under AR(1) would also be optimal under MA(1).
We then immediately have

Theorem 2. Under model (1) with errors within each subject following a stationary first-order moving average process,
for p = 3, t �3 and any � ∈ (− 1

2 , 1
2 ), a crossover design d∗ based on an OAI (n, 3, t, 2) with columns corresponding

to subjects and rows corresponding to periods is universally optimal in �t,n,3 for the direct treatment effects.
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Table 3
Numerical values of n minx,y max�h�(x, y) for p = 4 (MA(1))

� −0.49 −0.4 −0.3 −0.2 −0.1 −0

t = 4, n = 12 33.254 32.670 32.283 32.157 32.296 32.727
t = 5, n = 20 55.433 54.469 53.837 53.644 53.896 54.643
t = 7, n = 42 116.434 114.430 113.133 112.764 113.344 114.975

� 0.1 0.2 0.3 0.4 0.49

t = 4, n = 12 33.514 34.785 36.813 40.324 46.984
t = 5, n = 20 55.991 58.160 61.622 67.618 79.018
t = 7, n = 42 117.892 122.567 130.024 142.956 167.602

For p = 4 and t �4, the cij (�)’s for the 15 equivalence classes are given in Table 5 in the Appendix. Table 3 shows
numerical results of n minx,y max� h�(x, y) for p = 4 and t = 4, 5, 7, respectively.

A pattern similar to that in Section 3 was observed, that is, for all � considered here, the trace of the information
matrix of the corresponding type I orthogonal array was equal to n minx,y max�h�(x, y). Therefore type I orthogonal
arrays are at least highly efficient for p = 4 and t = 4, 5, 7 for these � values, and again these designs are very likely
to be optimal or highly efficient for any � ∈ (− 1

2 , 1
2 ).

5. Discussion

We have shown that in the self and simple mixed carryover effects model, when t �p = 3, type I orthogonal arrays
are universally optimal for AR(1) with any � ∈ (−1, 1), and for MA(1) with � ∈ (− 1

2 , 1
2 ); when p = 4 and t = 4, 5, 7,

the efficiencies of type I orthogonal arrays are at least 0.999 for both AR(1) and MA(1) with selected � values running
through the entire intervals that apply. In the case of the traditional model, however, the optimality and efficiency of
type I orthogonal arrays depend on the value of �. For example (see Kunert and Martin, 2000b), when t �p = 3, type
I orthogonal arrays are optimal only if � > 1/t for AR(1), and � > 1/(t + 1) for MA(1); when p = t = 4 and under
AR(1), the efficiency of type I orthogonal arrays is more than 0.9933 if �� − (

√
2 − 1), and is 1 if � > 0.1193 and it

drops rapidly for more negative �, approaching 0.7917 for � → −1.
Numerical results for p = 4 and any t > 7 can be easily obtained for both correlation structures in a similar manner

and high efficiency(at least 0.999) of type I orthogonal arrays can also be established as expected (details are omitted
here). So it is fairly safe to conjecture that a design based on an OAI (n, 4, t, 2) is indeed optimal for both AR(1) and
MA(1) as long as t �4.

The special case � = 0 for both correlation structures corresponds to the homoscedastic model, for which our results
can also be justified by Kunert and Stufken (2002). This is so because the class of type I orthogonal arrays is a subclass
of totally balanced designs.

Observe that an OAI (n, p′, t, 2) can be obtained by deleting the last p − p′ rows of an OAI (n, p, t, 2) (p′ < p),
thus if one initially embarks on a 4-period (or 3-period) design based on an OAI (n, 4, t, 2) (or OAI (n, 3, t, 2)), but
has to stop after three or two (or two) periods, one would still be using a highly efficient (indeed optimal) design (see
Afsarinejad and Hedayat, 2002 for the optimality of an OAI (n, 2, t, 2)).

An obvious drawback of designs using type I orthogonal arrays is that such designs do not allow the assessment
of the self carryover effects and thus the appropriateness of the model assumptions about the carryover effects. If this
is a primary concern in practice, one should consider other appropriate designs. However, in many applications the
restriction on the number of subjects would make such an assessment difficult in any case and the use of these designs
needs to be based, at least in part, on prior judgment and an act of faith.

Type I orthogonal arrays exist only if n, the number of subjects, is an integer multiple of t (t − 1), which may be
unacceptably large in practice unless t is small. However, as pointed out by Majumdar and Martin (2004), designs found
still have two useful aspects. Firstly, it gives a lower bound for the criterion values for designs with fewer subjects,
and secondly it suggests the structure that an efficient design with fewer subjects is likely to need. This leads the
experimenter to designs that may be utilized in real applications.
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Table 4
Equivalence classes and cij (�)’s for p = 4 and t �4 (AR(1)).

� sequence c11(�) c12(�) c13(�)

1 [1111] 0 0 0
2 [1112] 3−�

2−� − 3−�
4−2�

1
2−�

3 [1121] 3+�+�2−�3

2−� − 4+3�−�3

4−2�
1+�+�2−�3

4−2�

4 [1122] 4−4�+3�2−�3

2−�
−2+�−2�2+�3

4−2�
4−4�+3�2−�3

4−2�

5 [1123] 5−2�+2�2−�3

2−�
−3−�−�2+�3

4−2�
2−�+2�2−�3

4−2�

6 [1211] 3+�+�2−�3

2−�
−2−�−�2+�3

2−�
1−2�+�2

4−2�

7 [1212] 4+4�−�2−�3

2−�
−6−7�+�2+2�3

4−2� 0

8 [1213] 5+2�−�3

2−�
−5−5�+2�3

4−2� 0

9 [1221] 4
2−�

−2
2−�

1
2−�

10 [1222] 3−�
2−�

−1−2�+�2

4−2�
2−3�+�2

4−2�

11 [1223] 5−�
2−�

−3−2�+�2

4−2�
1

2−�

12 [1231] 5+�+�2−�3

2−�
−4−3�+�3

4−2� 0

13 [1232] 5+2�−�3

2−�
−4−7�+2�2+�3

4−2� 0

14 [1233] 5−2�+2�2−�3

2−�
−2−3�+�3

4−2�
2−3�+�2

4−2�

15 [1234] 6+�2−�3

2−�
−3−5�+�2+�3

4−2� 0

c22(�) c23(�) c33(�)

1 [1111] 0 0 (t−1)(3−�)
t (4−2�)

2 [1112] (t−1)(3−�)
t (4−2�) − t−1

t (2−�)
2(t−1)
t (2−�)

3 [1121] t (6+�2−�3)+(−4+4�−3�2+�3)
t (4−2�)

t (−1−�−�2+�3)+(2−�+2�2−�3)
t (4−2�)

(t−1)(3+�+�2−�3)
t (4−2�)

4 [1122] (t−1)(3+�+�2−�3)
t (4−2�)

t (−1−�−�2+�3)+(2+3�−�3)
t (4−2�)

t (6+�2−�3)+(−4−4�+�2+�3)
t (4−2�)

5 [1123] t (6+�2−�3)+(−4+4�−3�2+�3)
t (4−2�)

t (−1−�−�2+�3)+(2−�+2�2−�3)
t (4−2�)

(t−1)(3+�+�2−�3)
t (4−2�)

6 [1211] t (3+�+�2−�3)−2
t (2−�)

t (−1+2�−�2)+2
t (4−2�)

(t−1)(3−�)
t (4−2�)

7 [1212] t (7+5�−2�3)+(−3+�)
t (4−2�) 0 0

8 [1213] t (7+5�−2�3)+(−3+�)
t (4−2�) 0 0

9 [1221] t (6+�2−�3)+(−4−4�+�2+�3)
t (4−2�)

t (−1−2�+�2)+(2+3�−�3)
t (4−2�)

(t−1)(3+�+�2−�3)
t (4−2�)

10 [1222] (t−1)(3+�+�2−�3)
t (4−2�)

2−�+2�2−�3

t (4−2�)
(t−1)(4−4�+3�2−�3)

t (4−2�)

11 [1223] t (6+�2−�3)+(−4−4�+�2+�3)
t (4−2�)

t (−1−2�+�2)+(2+3�−�3)
t (4−2�)

(t−1)(3+�+�2−�3)
t (4−2�)

12 [1231] t (9+�+2�2−2�3)+(−3+�)
t (4−2�) 0 0

13 [1232] t (9+�+2�2−2�3)+(−3+�)
t (4−2�) 0 0

14 [1233] t (3+�+�2−�3)−2
t (2−�)

1
t (2−�)

(t−1)(3−�)
t (4−2�)

15 [1234] t (9+�+2�2−2�3)+(−3+�)
t (4−2�) 0 0
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Table 5
Equivalence classes and cij (�)’s for p = 4 and t �4(MA(1)).

� Sequence c11(�) c12(�) c13(�)

1 [1111] 0 0 0

2 [1112] 3−4�
(2−�)(1−�−�2)

−3+4�
2(2−�)(1−�−�2)

1
2−�

3 [1121] 3−2�−�2

(2−�)(1−�−�2)

−4+�+3�2

2(2−�)(1−�−�2)

1+�2

2(2−�)(1−�−�2)

4 [1122] 2−3�
1−�−�2

−1+�
2(1−�−�2)

2−3�
2(1−�−�2)

5 [1123] 5−7�+�2

(2−�)(1−�−�2)

−3+2�+�2

2(2−�)(1−�−�2)

1−�
2(1−�−�2)

6 [1211] 3−2�−2�2

(2−�)(1−�−�2)

−1
1−�−�2

1−3�
2(2−�)(1−�−�2)

7 [1212] 2+�
1−�−�2

−3−2�
2(1−�−�2)

0

8 [1213] 5−3�−�2

(2−�)(1−�−�2)

−5
2(2−�)(1−�−�2)

0

9 [1221] 4
2−�

−2
2−�

1
2−�

10 [1222] 3−4�
(2−�)(1−�−�2)

−1−�+2�2

2(2−�)(1−�−�2)

1−2�
2(1−�−�2)

11 [1223] 5−6�−2�2

(2−�)(1−�−�2)

−3+�+4�2

2(2−�)(1−�−�2)

1
2−�

12 [1231] 5−4�−3�2

(2−�)(1−�−�2)

−4+�+3�2

2(2−�)(1−�−�2)
0

13 [1232] 5−3�−�2

(2−�)(1−�−�2)

−4−3�+5�2

2(2−�)(1−�−�2)
0

14 [1233] 5−7�+�2

(2−�)(1−�−�2)

−1−�
2(1−�−�2)

1−2�
2(1−�−�2)

15 [1234] 6−6�−�2

(2−�)(1−�−�2)

−3−2�+3�2

2(2−�)(1−�−�2)
0

c22(�) c23(�) c33(�)

1 [1111] 0 0 (t−1)(3−4�)
2t (2−�)(1−�−�2)

2 [1112] (t−1)(3−4�)
2t (2−�)(1−�−�2)

1−t
t (2−�)

2(t−1)
t (2−�)

3 [1121] t (6−6�−�2)−4+8�−3�2

2t (2−�)(1−�−�2)

t (−1−�2)+2−3�+�2

2t (2−�)(1−�−�2)

(t−1)(3−2�−�2)

2t (2−�)(1−�−�2)

4 [1122] (t−1)(3−2�−�2)

2t (2−�)(1−�−�2)

t (−1−�2)+2+�−�2

2t (2−�)(1−�−�2)

t (6−6�−�2)−4+�2

2t (2−�)(1−�−�2)

5 [1123] t (6−6�−�2)−4+8�−3�2

2t (2−�)(1−�−�2)

t (−1−�2)+2−3�+�2

2t (2−�)(1−�−�2)

(t−1)(3−2�−�2)

2t (2−�)(1−�−�2)

6 [1211] t (3−2�−�2)−2+2�+2�2

t (2−�)(1−�−�2)

t (−1+3�)+2−2�−2�2

2t (2−�)(1−�−�2)

(t−1)(3−4�)
2t (2−�)(1−�−�2)

7 [1212] t (7−2�−2�2)−3+4�
2t (2−�)(1−�−�2)

0 0

8 [1213] t (7−2�−2�2)−3+4�
2t (2−�)(1−�−�2)

0 0

9 [1221] t (6−6�−�2)−4+�2

2t (2−�)(1−�−�2)

t (−1−�+2�2)+2+�−�2

2t (2−�)(1−�−�2)

(t−1)(3−2�−�2)

2t (2−�)(1−�−�2)

10 [1222] (t−1)(3−2�−�2)

2t (2−�)(1−�−�2)

1−�
2t (1−�−�2)

(t−1)(2−3�)
2t (1−�−�2)

11 [1223] t (6−6�−�2)−4+�2

2t (2−�)(1−�−�2)

t (−1−�+2�2)+2+�−�2

2t (2−�)(1−�−�2)

(t−1)(3−2�−�2)

2t (2−�)(1−�−�2)

12 [1231] t (9−8�−2�2)−3+4�
2t (2−�)(1−�−�2)

0 0

13 [1232] t (9−8�−2�2)−3+4�
2t (2−�)(1−�−�2)

0 0

14 [1233] t (3−2�−�2)−2+2�+2�2

t (2−�)(1−�−�2)

1
t (2−�)

(t−1)(3−4�)
2t (2−�)(1−�−�2)

15 [1234] t (9−8�−2�2)−3+4�
2t (2−�)(1−�−�2)

0 0
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Finally, only two correlation structures, AR(1) and MA(1), are considered in this paper. It is not only intuitively
appealing, but also just unpractical to make too complicated assumptions to address optimal design problems. Since
the AR(1) and MA(1) structures are not introduced until Sections 3 and 4, so the method of this paper may be used
for other correlation structures as well. In the worst case scenario when we have no any prior information about
the correlation structure in advance, type I orthogonal arrays are extremely appealing since they are optimal for any
correlation structure in the class of all binary designs (the results of Kunert and Martin, 2000b can be easily extended to
the model considered in this paper ) and are very likely to be optimal or highly efficient in the entire class for a variety
of correlation structures.
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Appendix

Equivalence classes and cij (�)’s for p = 4 and t �4 are shown in Tables 4 (AR(1)) and 5 (MA(1)).
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